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Abstract—This paper highlights the methodology and 
effectiveness of adapting the reconfigurable SpaceCube system 
to solve complex application requirements for a variety of 
space flight missions.  SpaceCube is a reconfigurable, modular, 
compact, multi-processing platform for space flight 
applications demanding extreme processing power.  The 
SpaceCube system is suitable for most mission applications, 
particularly those that are computationally and data intensive 
such as instrument science data processing.  We will show how 
the SpaceCube hybrid processing architecture is used to meet 
data processing performance requirements that traditional 
flight processors cannot meet. 
 
This paper discusses the flexible computational architecture of 
the SpaceCube system and its inherent advantages over other 
avionics systems.  The SpaceCube v1.0 processing system 
features two commercial Xilinx Virtex-4 FX60 Field 
Programmable Gate Arrays (FPGA), each with two embedded 
PowerPC405 processors.  The FPGAs are mounted in an 
innovative back-to-back method, which reduces the size of the 
circuit board design while maintaining the added benefit of 
two FPGAs.  All SpaceCube v1.0 cards are 4” x 4”, yielding a 
small, yet powerful hybrid computing system.  The 
architecture exploits the Xilinx FPGAs, PowerPCs, and 
necessary support peripherals to maximize system flexibility.   
Adding to the flexibility, the entire system is modular.  Each 
card conforms to a custom mechanical standard that allows 
stacking multiple cards in the same box. 
 
This paper will detail the use of SpaceCube in multiple space 
flight applications including the Hubble Space Telescope 
Servicing Mission 4 (HST-SM4), an International Space 
Station (ISS) radiation test bed experiment, and the main 
avionics subsystem for two separate ISS attached payloads.  
Each mission has had varying degrees of data processing 
complexities, performance requirements, and external 
interfaces.  We will show the methodology used to minimize the 
changes required to the physical hardware, FPGA designs, 
embedded software interfaces, and testing. 
 
This paper will summarize significant results as they apply to 
each mission application.  In the HST-SM4 application we 
utilized the FPGA resources to accelerate portions of the image 
processing algorithms more than 25 times faster than a 
standard space processor in order to meet computational speed 
requirements.  For the ISS radiation on-orbit demonstration, 
the main goal is to show that we can rely on the commercial 
FPGAs and processors in a space environment.  We describe 
our FPGA and processor radiation mitigation strategies that 
have resulted in our eight PowerPCs being available and error 
free for more than 99.99% of the time over the period of four 
years.  This positive data and proven reliability of the 
SpaceCube on ISS resulted in the Department of Defense 
(DoD) selecting SpaceCube, which is replacing an older and 

slower computer currently used on ISS, as the main avionics 
for two upcoming ISS experiment campaigns.  This paper will 
show how we quickly reconfigured the SpaceCube system to 
meet the more stringent reliability requirements. 
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1. INTRODUCTION 

SpaceCube is a family of Field Programmable Gate Array 
(FPGA) based on-board science data processing systems 
developed at the NASA Goddard Space Flight Center 
(GSFC) [1]. The goal of the SpaceCube program is to 
provide 10x to 100x improvements in on-board computing 
power while lowering relative power consumption and cost. 
SpaceCube is based on the Xilinx Virtex family of FPGAs, 
which include processor, FPGA and digital signal 
processing (DSP) resources.  These processing elements are 
leveraged to produce a hybrid science data processing 
platform that accelerates the execution of science data 
processing algorithms by distributing computational 
functions among the elements.  This approach enables the 
implementation of complex on-board functions that were 
previously limited to ground based systems, such as on-
board product generation, data reduction, calibration, 
classification, event/feature detection, data mining and real-
time autonomous operations.  The system is fully 
reconfigurable in flight, including data parameters, software 
and FPGA configuration, through either ground 
commanding file transfers or autonomously in response to 
detected events/features in the instrument data stream. 

Background 

The SpaceCube processing system was started at GSFC in 
2006 with Internal Research and Development (IRAD) 
program funding [2].  A series of internal prototype 
demonstrations to NASA officials showcased the 
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computational power and its inherent reconfigurable 
advantages over typical space processors.  NASA 
recognized the clear potential of the technology, and 
provided the funding needed to increase the technology 
readiness level (TRL) for space flight applications.  
Specifically, the Hubble Space Telescope Servicing Mission 
4 management team infused SpaceCube as the main 
avionics for an experimental payload called Relative 
Navigation Sensors (RNS) [3].  The use of SpaceCube 
within the RNS system will be described in detail later in 
this paper. 

The version of the SpaceCube that was initially developed 
in the 2006-2009 timeframe is known as SpaceCube v1.0.  
Follow-on versions have been developed [1]; however the 
design and use of SpaceCube v1.0 will be the focus of this 
paper. 

2. HYBRID FLIGHT COMPUTING 
There is a growing need for higher performance processing 
systems for space.  Instrument precision and speed 
capabilities are rapidly evolving which levies tougher 
electrical interfacing and data bandwidth requirements on 
the computing node of the system.  In addition, on-board 
processing of the data products, in some cases in real-time, 
is now a common requirement.   

On-board processing improves system efficiency and 
functionality in two areas.  First, by allowing the spacecraft 
to preprocess data products on board, a smaller or 
compressed data volume per data set can be sent to ground, 
which increases the amount of time an instrument can be 
turned on and collecting data.  It is typical for high data rate 
science instruments to constrain their data collection to 10-
20% of the mission time to fit within the limited downlink 
bandwidth.  This problem continues to grow as instrument 
capabilities increase.  Second, it enables for applications on 
board the spacecraft to make autonomous decisions on the 
processed data products.  This ability opens up a much more 
challenging range of mission objectives that can be targeted 
for space applications. 

Typical space processing systems generally consist of a 
single radiation hardened processor such as the BAE 
RAD750, Aeroflex LEON3FT, BroadReach BRE440, or 
General Dynamics ColdFire which deliver less than 300 
DMIPS.  These standard processing systems are very good 
at providing general services such as Command and Data 
Handling (C&DH), Guidance and Navigation Control 
(G&NC), and simple instrument control.  These processing 
systems are not good candidates for applications that require 
implementing fast computations of complex algorithms on a 
high bandwidth or large volume data source. 

Another common component found in typical space 
processing systems is the anti-fuse FPGA, which generally 
have very good radiation immunity.  The corresponding 
circuit board and FPGA architectures are designed for a set 
of very specific mission requirements.  However, these 

architectures are very hard to design and intrinsically 
expensive to change such that they are portable to multiple 
missions, dynamic functional requirements, or new post-
launch mission objectives or corrections. 

A new approach is needed to meet the increasing challenges 
required by space processing systems.  A hybrid computing 
system that combines multiple processors, reconfigurable 
FPGAs, flexible interface options, with a modular 
architecture is the solution that will bridge the gap between 
today’s avionics requirements and yesterday’s typical stand-
alone sequential processing architecture.  A hybrid 
computing architecture is able to retain the function of a 
multi-purpose computer that runs typical C&DH and 
G&NC.  However, in addition to these types of tasks, it has 
the advantage of supporting computationally complex tasks 
that require FPGA co-processors to handle math such as 
FFT, matrix manipulation, parallel floating point operations, 
or implementing an advanced interface such as CameraLink, 
Spacewire, gigabit Ethernet, or support the implementation 
of a custom interface. 

The modularity of such a system allows for the quick 
adaptation to changing avionics requirements.  A modular 
system, for example, can support adding a bulk memory 
card, a custom electrical interface, or expand the I/O 
bandwidth required.  A modular and reconfigurable system 
yields a high probability of using the same basic avionics 
package for different mission applications, or follow-on 
missions, even if interface and computing requirements are 
drastically different.   

SpaceCube fits the need of a hybrid, reconfigurable, 
modular space processing system.  This paper will show 
how cost and schedule can be reduced by reusing the same 
basic system for new missions.  Reuse of hardware 
architecture greatly reduces the amount of up front Non 
Recurring Engineering (NRE) costs and time associated 
with building a new system with new requirements from the 
ground up. 

3. SPACECUBE V1.0 DESCRIPTION 
The SpaceCube v1.0 system is a compact, modular, low 
power, reconfigurable multiprocessing platform for space 
flight applications demanding extreme computational 
capabilities and/or high data rate/volume interfaces.  The 
SpaceCube v1.0 processing system is based on the Xilinx 
Virtex-4 FX60 FPGA that includes two embedded hard IP 
PowerPC405 processors. 

This specific FPGA was the subject of radiation testing and 
characterization by many groups including, but not limited 
to the Xilinx Radiation Test Consortium and the GSFC 
Radiation Effects and Analysis Group [10-16].  The 
SpaceCube design leverages this work to properly mitigate 
radiation effects within the system, as will be discussed later 
in this paper. 
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A. Modular Stacking Architecture 

The SpaceCube v1.0 mechanical design uses a custom 
stacking architecture.  The system is comprised of various 
slices that are stacked together using a 122-pin connector 
from IEH Corporation [7].  The system uses a dual-
redundant I2C bus for low data rate transfers between all 
cards in the stack.  Each card is given a unique address on 
the bus.  The base system requires a power slice and a 
processor slice.  This architecture allows for adding mission 
unique cards, if necessary.  Four rods are used to hold the 
box together once all slices have been mated together.  
Figure 1 depicts the SpaceCube v1.0 modular architecture.  
This version of the system required five slices (2 power, 2 
processor, 1 I/O).  Figure 2 shows the picture of the flight 
box that corresponds to the model in Figure 1.  This 
configuration of the system is 7.5-lbs. and is 5-in x 5-in x 7-
in in size [9]. 

 
Figure 1 - SpaceCube v1.0 Modular Slice Architecture 

 
Figure 2 - SpaceCube v1.0 Flight System 

Each circuit board within the system is 4-in. x 4-in in size.  
A mechanical tray holds the card in place and allows the 
stacking connector to protrude through the bottom of the 
slice.  The card edges are bolted down to its respective slice 
enclosure.  In addition to the structural mount, the card edge 
is also the thermal interface for each card.  Figure 3 shows 
the flight processor card slice enclosure. 

 
Figure 3 - Slice Enclosure of Processor Card 

B. Power Slice Design 

The power slice consists of two circuit boards.  The Low 
Voltage Power Card (LVPC) has the typical EMI filter and 
DC/DC components found in space flight power supplies.  
The LVPC will accept 28V +/- 8V and provide 5.0V, 3.3V, 
2.5V, 1.5V, and +/- 12V to the stacking connector.  On 
power-up, 2.5V, 3.3V, and 5.0V are automatically turned on 
to support the main controller circuitry on the processor 
card.  The LVPC supports switched services for 1.5V, 2.5V, 
3.3V and +/-12V.  The main controller on the processor card 
switches on these services by commands to support the 
Xilinx FPGAs.  The processor card has a custom point-of-
load circuit that regulates the 1.2V required for the core 
voltage of the Xilinx devices. 

  
Figure 4 – Power Slice Assembly of DCC and LVPC 

The second card in the power slice is the Digital Control 
Card (DCC).  The DCC supports various functions 
including collecting local voltage and temperature data, 
SpaceCube 10BASE-T Ethernet and 1553 interfaces, 
controlling processor reset and power loss warning signals, 
and switching load services on the LVPC.  An Aeroflex 
FPGA is used to control these functions and to 
communicate with the processor card via the I2C bus.  

The LVPC and DCC cards are stacked together inside of 
one enclosure slice. The LVPC assembly requires a heat 
sink to handle the power loss within the DC/DC bricks.  
Figure 4 shows the assembly of the power slice.  On the left, 
the DCC sits at the bottom of the enclosure.  Two side rails 
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are installed above the DCC which are seen along the edges 
of the chassis.  Next, the LVPC is mated to the DCC board 
and bolted to the side rails.  The LVPC is shown on the right 
with the heat sink installed to its circuit card assembly. 

C. Processor Card Design 

The processor card features two Xilinx Virtex-4 FX60 
devices in a back-to-back fashion. Figure 5 shows that the 
processor board fully utilizes both sides of the circuit board. 
Each Xilinx FPGA has two embedded PowerPC405, each 
capable of 750+ DMIPS.  This results in four processors per 
card yielding a total processing capacity of 3000 
DMIPS/card in addition to the 113,760 logic cells, 256 DSP 
slices, and 8,352 Kb of Block RAM resources [24]. 

The card features a good balance of peripherals to support 
the Xilinx FPGAs and processors given the limited board 
space.  Peripherals include four 256MB Synchronous 
Dynamic Random Access Memory (SDRAM) modules, two 
redundant 512MB NAND flash modules, 20 configurable 

full duplex LVDS/RS422 interface modules, 42 stacking 
connector I/O, and required clock and power circuitry.  The 
front panel I/O connectors are configurable as required by 
each application.  Figure 6 shows a high level component 
diagram of the processor card design. 

 
Figure 5 - Processor Card, Top and Bottom Sides 

 
Figure 6 - High Level Block Diagram of Processor Card

Aeroflex Service Design—Two back-to-back Aeroflex 
FPGAs control the power sequencing of the switched power 
rails via I2C commands, reset control, watchdog timers, 
mission elapsed timer, scratch-pad ram, Xilinx 
configuration, non-volatile storage access, and monitor 
health and status.  To provide all of these services as well as 
facilitate reconfiguration and reuse of the one-time-
programmable (OTP) Aeroflex FPGA an embedded 8-bit 
soft-core microcontroller (SpaceRISC) was designed and 
used as an alternative to using a complex state machine.  
This design decision has proven useful in not only 
enhancing the services provided but also allowed for debug 
and test code to be loaded into the OTP FPGA to better 
facilitate initial board testing as well as system integration 
and test activities.  

The SpaceRISC is based on a standard commercial device 
that can only address 16KB of the 32KB SRAM.  We turned 
this limitation into a benefit by developing a memory 

controller that could conditionally operate out of the top or 
bottom half of the memory while simultaneously providing 
a side channel for read/write access to the ‘inactive’ portion 
of ram.  This facilitates a complete reconfiguration of the 
microcontroller while the current flight application is still 
running.  The first stage boot loader (FSB) for the 
SpaceRISC is stored in an onboard radiation hardened 
16KB PROM.  The SpaceRISC cannot execute code directly 
out of the PROM so a hardware boot-loader IP core was 
created to copy data from the PROM to the external SRAM 
before bringing the SpaceRISC out of reset.  The 
SpaceRISC FSB will then search for the latest Run-Time 
Application (RT-App) to load and execute.  The RT-App is 
stored in a Quad-Triple Module Redundant manner; should 
the FSB not successfully load the RT-App it will fall back 
to the previous version.  The RT-App is fully capable of 
performing this boot loader sequence from ground 
commands or alternative configuration files which allows 
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multiple variants of the RT-App to be stored in flash while 
still preserving the ‘Gold’ boot configuration. 

As the RT-App starts to execute it will first check to see if 
the startup was due to a watchdog timer reset or a clean 
power up.  In the event of a watchdog timeout (WDT) the 
RT-App will check the configuration table for a set of flags 
to determine the next course of action.  The current flight 
configuration allows for a programmable threshold of WDT 
and reverts to the ‘Gold’ application code should it exceed 
the threshold.  After a nominal proceed condition is met the 
RT-App needs to enable the Xilinx FPGA’s by turning on 
the switched power rails and configuring the FPGA.  The 
bitstreams used for configuration are determined by a 
configuration file that is stored in flash.   

PROM Stores SpaceRISC FSB

Aeroflex HW Copies FSB 
To Bottom SRAM

SpaceRISC FSB
Load Latest Flight Application from Quad-TMR Flash To 

‘inactive’ SRAM – fallback if required

Flight Application
Configuration of Top/Bottom FPGAs

PPC0 FSB
Loads U-Boot

PPC1 FSB
Loads U-Boot

PPC2 FSB
Loads U-Boot

PPPC3 FSB
Loads U-Boot

PPC0 U-Boot 
Requests 

Boot Script

PPC1  U-Boot 
Requests 

Boot Script

PPC2 U-Boot 
Requests 

Boot Script

PPC3 U-Boot 
Requests 

Boot Script

PPC0 U-Boot 
Executes 

Script

PPC1 U-Boot 
Executes 

Script

PPC2 U-Boot 
Executes 

Script

PPC3 U-Boot 
Executes 

Script

PPC0
Flight OS / 

App Running

PPC1
Flight OS / 

App Running

PPC2
Flight OS / 

App Running

PPC3
Flight OS / 

App Running

Read/Write 
Flash Requests 
between PPCs 
and SpaceRISC 
via High Speed 

Serial Ports

SpaceRISC RT App
Load/Check Runtime Configuration from Quad-TMR Flash

SpaceRISC RT App
Sequences Switched Rails and enables Xilinx FPGAs

 
Figure 7 - Simplified Processor Boot Sequence 

The RT-App then brings the PowerPC (PPC) processors out 
of reset and the PPCs start to execute their First Stage 
Bootloaders (PPC FSB).  The PPC FSB will then request 
the second stage bootloader from the SpaceRISC; we have 
chosen to use UBoot as our second stage bootloader.  UBoot 
will then request a boot script from the SpaceRISC that 
contains commands and the file addresses required to load 
the flight operating system and applications.  The files are 
read from the SpaceRISC with a series of ‘get file info’ 
commands and ‘flash read requests’.  The ‘get file info’ 
commands take in a file ID that is translated to a flash 
address by the SpaceRISC.  The SpaceRISC then reads the 
file headers and send it back to the PPC.  This header 
contains information about the file address in flash, data 
CRC length and if the image is mirrored across multiple 
devices.  The PPC and SpaceRISC then perform a series of 

flash read request and response packets until all of the data 
is transmitted and UBoot can load the OS/Application.  The 
simplified boot sequence is shown in Figure 7. 

Flash File Mitigation—NAND Flash technology is known 
to be susceptible to radiation Single Event Effects (SEE) 
including Single Event Upsets (SEU) and Single Event 
Function Interrupts (SEFI).  Each processor card flash 
module is composed of four independent dies inside.  The 
SpaceRISC NAND Flash Controller has the capability of 
performing mirrored read and write operations, which store 
the same file in one or more die.  In addition, software in the 
SpaceRISC has the capability of adding Triple Modular 
Redundant (TMR) duplication of each file within each die.  
For the most mission critical data such, as the SpaceRISC 
configuration tables and software, we utilized Quad-
redundant with byte level TMR (QTMR).  As the 
SpaceRISC reads a file it will read in three bytes at a time 
and perform a series of bit-wise AND/OR operations on the 
data set (1).  The output of this operation is then byte-wise 
ANDed to the input data set (2).  To mitigate the possibility 
of two bit flips in the same bit position resulting in a false 
positive output, the voted results are compared to the input 
values and if any of the values do not match the voted 
output the system moves onto the next mirrored copy of the 
file at the current file offset.  In the event that all copies 
indicate some kind of error we will use the voted output 
from the last test.  This coupled with four checksums per 
page and checksums on all files helps to detect multiple bit 
flips in the NAND Flash before they are used by the system. 

 TMR_RESULT = (d0 & d1) | ( d0 & d2) | (d1 & d2) (1) 

 TMR_ERROR_n = (TMR_RESULT && d0) ||  
 (TMR_RESULT && d1) || (TMR_RESULT && d2) (2) 

Due to that fact that QTMR is partially implemented in 
software it would require extending the boot time to utilize 
this method for larger files such as those for Xilinx 
bitstreams and the PowerPC OS and ramdisks.  To minimize 
our boot time and thus increase our availability larger 
images are store in a Quad Mirrored fashion with DMA read 
and transmit assist.  When a flash read request if received by 
the SpaceRISC the request is validated and a NACK packet 
is sent in response if any errors are detected otherwise the 
SpaceRISC will setup a flash read response and transmit the 
packet header information, the hardware in the Aeroflex 
FPGA will read data from the flash and place it directly into 
the transmit buffer while also calculating the data checksum 
which will be added to the header checksum to allow for 
general validation of the response packet.  The data 
transmitted also include the Out Of Bounds area of the 
NAND flash that is used to store error correcting codes for 
the NAND Flash page.  Software in the PowerPC will then 
check that the page is valid or request a new page from the 
next mirrored copy. 

Xilinx Configuration Scrubbing—The task of monitoring 
the programmable configuration bits within the Xilinx 
FPGA is typically handled by an outside controller.  The 
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Aeroflex FPGA designs and processing load on the 
SpaceRISC were considered to be at full capacity.  The 
SpaceCube v1.0 Xilinx FPGAs contain an internal TMR 
self configuration scrubber that utilizes the ICAP and 
FRAME_ECC [12].  The Aeroflex FPGA is responsible for 
enabling this service.  The scrubber core reports status to the 
Aeroflex FPGAs that it is actively scrubbing, if it has 
detected and corrected an SEU, or if it has found an 
uncorrectable error as a result of a Multiple Bit Upset. 

D. FPGA Design and Software Design Methodology 

FPGA development for the SpaceCube Xilinx FPGAs 
requires the standard Xilinx tool chains (ISE, EDK).  We 
have developed a baseline FPGA design that includes the 
necessary framework for an embedded system using the 
PowerPCs on the SpaceCube.  This baseline system is given 
to developers as a starting point for porting a new 
application to the SpaceCube environment.  Similar FPGA 
designs have also been developed for the ML403 and 
ML410 Xilinx development boards.  This allows for a 
cheaper development cycle for application engineers prior to 
targeting the SpaceCube system.   

The PowerPCs within the Xilinx FPGAs on the SpaceCube 
currently support standalone code, Linux, VxWorks, and 
RTEMs operating systems (OS).  The SpaceCube software 
team has modified an existing Linux OS and fine-tuned it to 
support the SpaceCube build environment (SpaceCube 
Linux). 

The SpaceCube system is easy for application engineers to 
target and allows for a fast development cycle.  We have 
supported more than 10 projects inside and outside of GSFC 
using this development approach.  All cases have resulted in 
a seamless application port to the SpaceCube hardware 
system. 

4. MISSION USE CASES 
This section will present four examples of how the 
SpaceCube v1.0 system was adapted to support different 
missions.  For each mission, we will describe the mission 
and its objectives, the corresponding SpaceCube hardware 
requirements and changes, FPGA and application 
descriptions, integration and testing, operations, and an 
assessment on overall development effort. 

A. Relative Navigation Sensors 

On May 11, 2009, STS-125 Space Shuttle Atlantis, lifted off 
from Kennedy Space Center (KSC) with new instruments, 
gyroscopes, and flight computers for the Hubble Space 
Telescope.  The HST Servicing Mission 4 (SM4) saw 
almost 37 hours of astronaut Extra-Vehicular Activity 
(EVA) time to install the instruments and hardware, and 
overcome many obstacles in servicing the observatory.  
Along for the ride on this mission, installed in the back of 
the shuttle payload bay on the Multi-Use Logistics 
Equipment (MULE) carrier, was a technology flight 

experiment called the Relative Navigation Sensors (RNS) 
system [1, 3, 4, 6, 9]. 

The RNS system, which was a driving technology 
requirement for the HST Robotic Servicing and De-orbit 
Mission (HRSDM), consists of three cameras, a GPS 
module, two redundant Mass Storage Modules (MSM) that 
each contains four hard drives, a Telemetry Module (TM), a 
SpaceCube v1.0 system as the payload’s central avionics 
and a dual redundant ground terminal. The two main 
objectives of RNS were to record imagery of HST during 
rendezvous and deploy operations, and also to demonstrate 
the capability of providing real-time tracking and position 
estimation on HST with the SpaceCube processing system. 
The RNS flight hardware is pictured in Figure 8. 

 
Figure 8 - RNS Payload Installed on MULE Carrier 

RNS SpaceCube System—The RNS SpaceCube consisted of 
two SpaceCube processor cards (SCuP), two power slices, 
and a custom card called the Video Interface Module 
(VIM).  Processor card 1 hosted two different position 
estimation and image tracking algorithms, the Goddard Near 
Feature Image Recognition (GNFIR) and Ultra Lethal 
Targeting by Optical Recognition (ULTOR).  Processor 
card 2 handled multiple tasks including GPS, MSM, TM, 
Automatic Gain Control (AGC), C&DH and shuttle KU-
band in a single Xilinx.   

 
Figure 9 - RNS SpaceCube Diagram 
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The VIM was responsible for compressing images.  The 
compressed images were stored during critical operations 
and sent to ground operators via the processor card 2 shuttle 
KU link.  This SpaceCube, pictured in Figure 2 prior to 
RNS payload integration, was approximately 5-in. x 5-in. x 
7-in. in size and required a nominal power of 37W (7-8W 
per processor card).  A high level SpaceCube diagram is 
shown in Figure 9. 

FPGA Design—Three of the four Xilinx FPGAs in the 
SpaceCube were 60-70% utilized.  The fourth FPGA was 
for design contingency, but was never needed and remained 
unprogrammed.  Two FPGA designs used one PowerPC and 
the ULTOR application FPGA design used both PowerPCs.  
The FPGA designs consisted of the required embedded 
system peripherals, internal card-to-card infrastructure, RNS 
interface peripherals such as the custom camera core, an 
internal triplicated self scrubbing configuration module, and 
hardware acceleration co-processing cores. 

A major part of the RNS experiment on HST-SM4 was the 
GNFIR pose estimation application.  One of the two Xilinx 
FPGAs in the processor card 1 hosted the GNFIR 
application.  In order to meet real-time processing 
requirements, the GNFIR system had to operate at 3 Hz.  
Initially, GNFIR was developed exclusively in software and 
run on the embedded PowerPC405 processor in the Xilinx.  
However, the performance using the processor alone was 
insufficient and GNFIR could only operate at 0.125Hz.  In 
order to improve the application performance, the Floating 
Point Unit (FPU) FPGA IP core was added to the PowerPC, 
which resulted in a 4x speedup to 0.5Hz.  We developed the 
custom Edge core in FPGA to accelerate some of the more 
compute intensive operations in GNFIR that resulted in an 
additional 6x speedup that enabled the application to operate 
at the required 3Hz [4].  The Edge core provides an FPGA 
implementation of the edge detection, gradient direction 
computations, and centroid computation on the camera 
image data. The edge detection is performed using a Sobel 
operator and computes the gradient vector at each image 
pixel by performing a convolution of two 3x3 filter kernels 
in the horizontal and vertical dimensions with the image.  
The gradient magnitude is then computed, and the edge data 
is scaled by a factor selected via a command register.  The 
gradient direction is calculated using a CORDIC arctangent 
module. The centroid of each input image was also 
computed.  Each pixel of the input image that is above the 
threshold in intensity is considered a significant pixel, and 
the centroid is the average coordinate location of all the 
significant pixels in the image. The desired threshold value 
was configurable through a command register by the 
software driver.  The edge core processing engine is fully 
pipelined and can produce an edge/angle pair at the same 
rate as the camera data pixels are supplied to it.  This data 
was buffered in a read FIFO in the FPGA core that was 
connected to the PowerPC’s Processor Local Bus (PLB).  
This allowed the processor to transfer the data to memory at 
a high rate using Direct Memory Access (DMA).  The 
reconfigurable nature of the radiation tolerant Xilinx FPGAs 

in the SpaceCube v1.0 allowed the new Edge core to be 
developed, integrated, and tested in a matter of months. 

Figure 10 shows the high-level diagram of the embedded 
system design used to implement the GNFIR application. 
GNFIR ran under the SpaceCube Linux OS. 

 
Figure 10 - GNFIR FPGA High-Level Design Example 

The ULTOR application FPGA was proprietary, designed 
by Advanced Optical Systems. The ULTOR and GNFIR 
applications continuously exchanged HST position estimate 
data.  This was implemented to help speed up the process of 
acquiring and locking onto the image in order to enter 
tracking mode.  The ULTOR application PowerPC ran 
under the VxWorks OS [4]. 

The C&DH FPGA design included an AGC algorithm with 
supporting FPGA core to dynamically adjust the camera 
brightness of the image as lighting conditions changed.  A 
custom interface core was necessary to extract streaming 
data from the GPS receiver.  The C&DH design also 
included a Floating-Point Unit (FPU) core, UARTs for 
communication with the MSMs and TM, and a KU core to 
stream continuous data to the shuttle’s KU transponder 
system.  The C&DH PowerPC ran under the SpaceCube 
Linux OS. 

RNS Testing—Preparing the RNS payload for flight was a 
considerable task due to the number of instruments, 
interfaces, and configurable operation modes, along with the 
challenge of obtaining high confidence that the system 
would track a school bus sized satellite in the space 
environment.  This involved a series of test campaigns at 
four NASA centers.  Three trips with were made to the 
Flight Robotics Laboratory (FRL) at the Marshall Space 
Flight Center (MSFC).  Testing at MSFC involved a full 
RNS engineering-level system and a full-scale aft bulkhead 
and a tenth-scale mockup of HST.  Full system integration 
and operation capabilities including image recording, 
position estimation and tracking, and AGC were 
incrementally tested during subsequent trips.  As issues 
arose during testing at the FRL, full advantage was taken of 
the SpaceCube’s reconfigurability to fix problems quickly.  
The command and telemetry capability and KU downlink 
were tested at Houston’s Johnson Space Center (JSC).  
Numerous tests at JSC included shuttle interface testing, 
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ground terminal verification, and mission operations 
simulations with the entire shuttle ops team.  All typical 
payload integration and environmental testing of the flight 
system was conducted at GSFC.  The most notable test at 
GSFC took place prior to delivery to Cape Canaveral.  With 
the RNS flight payload integrated onto the MULE carrier, a 
crane was used to maneuver the full-scale HST bulkhead to 
test the close proximity rendezvous and deploy sequences 
(Figure 11).   

 
Figure 11 - RNS Flight Payload Testing at GSFC 

Final testing and shuttle integration took place at KSC.  
Two final software updates to the SpaceCube were 
conducted that fixed minor bugs that were found during 
ongoing testing at GSFC on the RNS engineering 
development units.  To support all of the different tests, two 
SpaceCube EDUs in addition to the SpaceCube flight box 
were built for the project.  The reconfigurability of the 
SpaceCube FPGAs and software were absolutely necessary 
in addressing the many issues that arose during application 
development, interface integration, and operation sequence 
testing.  RNS would have missed schedule deadlines if the 
avionics did not have the ability to quickly adapt to required 
changes.  However, after environmental testing, the FPGA 
designs were locked down. 

Operations—Payload operations were conducted by the 
RNS team from the Payload Operations Control Center 
within Houston’s Mission Control facility.  RNS was 
successful in achieving all of its on-orbit objectives.  The 
GNFIR position and attitude estimation algorithm 
successfully tracked HST for 21 minutes during rendezvous 
using the long range camera between ranges of 50 to 100 
meters, and also tracked HST during deploy for 16 minutes 
using the short range camera at a 2 to 3 meter range [4].  
RNS recorded a total of 6+ hours of HST imagery (~750GB 
data) during rendezvous and deploy.  GNFIR feature 
tracking during rendezvous and deploy are shown in Figure 
12.  

Figure 13 shows a split screen of an image of HST during 
rendezvous from the long range camera and the real-time 
GNFIR solution computed on the SpaceCube at that given 
time. 

 
Figure 12 - Real-Time GNFIR Feature Tracking of HST 

 
Figure 13 - GNFIR Estimation Overlay of HST Location 

RNS also recovered 100,000+ compressed images over the 
course of the mission using the video compression 
capability in the SpaceCube.  An example of a compressed 
image that was downloaded during mission operations is 
shown in Figure 14. 

 
Figure 14 - Compressed Image from HST Release 
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The RNS system infrastructure did not allow for on-orbit 
FPGA reconfiguration of the SpaceCube, but did allow for 
software parameters to be updated in the processor card’s 
flash.  The AGC parameters in flash were successfully 
updated to tune the algorithm for the deploy operations.  In 
total, SpaceCube was powered for 60 hours during this 
mission.  Two SEUs were detected and successfully 
repaired by the scrubber.  During a routine KU image 
downlink, the C&DH PowerPC experienced an SEE, at 
which point it stopped functioning.  The PowerPC 
WatchDog Timer in the Aeroflex FPGA successfully 
detected that the heartbeat had stopped and reprogrammed 
the FPGA, at which point the KU data dump was resumed. 

Development Effort—The manpower and schedule to 
deliver the RNS flight box is significantly greater than 
subsequent missions using the v1.0 system.  This 
development cycle accounted for all of the NRE required 
when building a new hardware system with supporting 
FPGA and software.  This includes all electrical engineering 
design, mechanical design, thermal design, radiation and 
parts engineering, systems design, anti-fuse FPGA design, 
Xilinx framework core development (PowerPC, SDRAM, 
scrubber, etc.), and software development for the 
SpaceRISC and PowerPCs. This phase of the development 
took two years and required the equivalent of approximately 
20 people/year, or 40 man-years.  Next, implementing RNS 
specific applications involved PowerPC software 
development, Xilinx FPGA core development, intra-box 
infrastructure testing, independent box verification, 
environmental testing, and post-delivery support.  The RNS 
implementation phase for SpaceCube was a simultaneous 
effort that lasted three years and required the equivalent of 
approximately 10 people/year, or 30 man-years.   

B. MISSE-7 

A SpaceCube system was launched to the ISS in November 
2009 as part of the Materials International Space Station 
Experiment 7 (MISSE-7) [16, 22].  MISSE-7 is installed on 
the ISS Express Logistics Carrier (ELC), specifically ELC-
2.  The main objectives of the MISSE-7 SpaceCube was to 
(1) demonstrate reliable use of the commercial devices, in 
this case Xilinx FPGAs and embedded PowerPCs, for a long 
duration in the space environment, (2) demonstrate 
continuous and reliable execution of computation-intensive 
science data applications utilizing SpaceCube’s Radiation 
Hardened by Software (RHBS) technology, (3) demonstrate 
the ability to reconfigure the FPGA and software with new 
design files sent from ground.  

MISSE-7 SpaceCube System—The flight spare hardware 
from RNS was used to develop this payload.  The MISSE-7 
payload transmits and receives telemetry and commands to 
ISS through the Communication Interface Box (CIB) over a 
RS485 bus with individual experiment hardware enables.  
Two processor/power slice pairs were configured as 
independent experiments with separate command and 
telemetry interfaces.  A new MISSE-7 interface slice was 
required within the SpaceCube modular stack to fulfill all 

hardware requirements and to support the two independent 
SpaceCube experiments.  The flight box that was delivered 
was the same physical size as RNS, but only required 28W 
of power (14W per processor/power slice pair).  A high 
level diagram of MISSE-7 is shown in Figure 15. 

 
Figure 15 - MISSE-7 System Diagram 

FPGA/Software Applications—There is significant re-use of 
the FPGA and software design from the RNS mission.  The 
initial FPGA design contained framework cores from RNS 
along with new cores specific to the MISSE-7 experiment.  
We tested preliminary versions of our RHBS 
methodologies.  One methodology involves running 
identical applications in two PowerPC in separate FPGAs.  
Mirrored C&DH applications on both FPGAs coordinate 
through the SpaceRISC to execute incoming commands and 
respond to telemetry requests.  Each C&DH app receives 
and processes incoming commands and requests for 
telemetry from the CIB and then transmits the parameters to 
the SpaceRISC.  Once the SpaceRISC receives a set of 
parameters from one C&DH app it sets a timer to wait for 
parameters from the second C&DH app.  The SpaceRISC 
validates the received parameters.  If valid parameters were 
received from both C&DH apps it grants one of the 
applications the right to process the parameters based on a 
round robin approach.  If only one valid set of parameters 
were received in the timeout window it grants the right to 
process to the app with the valid parameters. If none of the 
parameters are valid then no rights to execution are given. 

This RHBS technique allows the C&DH system to generate 
telemetry and process command free from error.  This also 
allows the system to operate when one FPGA is down. 

Along with the C&DH app, the RHBS demonstration 
experiment continuously runs a Lunar Lander task using 
data stored in SDRAM.  The Lunar Lander application 
performs part of the calculations needed for an 
autonomously controlled vehicle to safely land on the 
surface of the moon avoiding unsafe terrain at the landing 
area.  The results are sent to the SpaceRISC inside of the 
Aeroflex.  The SpaceRISC software, which had to be 
modified to support MISSE-7, allows for timing windows 
that each processor has to send incremental results.  
Different modes are supported for rolling back a processor 
task if it fails to send data or if the processors become out of 
sync.  The SpaceRISC also has the ability to completely 
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ignore a processor string.  A high-level diagram of how the 
FPGA embedded system is configured is shown in Figure 
16 [5]. 

 
Figure 16 - MISSE-7 SpaceCube Processor Design 

New FPGA cores were developed to support the MISSE-7 
experiment.  The hardware acceleration Sobel Edge core 
from RNS was slightly modified to support the Lander 
application.  The CIB UART core was designed to handle 
all CIB communication and significantly assist software in 
robust packet handling.  The spare PowerPCs in each FPGA 
were utilized to run continuous tasks.  An identical task was 
run in a MicroBlaze processor.  Each processing string had 
command and telemetry capability to the main C&DH 
application running in the primary PowerPC.  Both of these 
secondary processing systems were clocked by separate 
redundant DCM structures.  Each redundant DCM consists 
of two DCMs that periodically (apprx. 1 minute) switch 
control of driving the clock net.  Additional logic is in place 
to detect a DCM string failure, switch over to the redundant 
DCM, and reset the failed DCM string.  A block diagram of 
the FPGA designs is shown in Figure 17. 

 
Figure 17 - MISSE-7 Xilinx Embedded System Design 

The radiation-tolerant SDRAM memory modules on the 
processor card are still prone to SEUs, and can require 
additional Error Detection and Correction (EDAC) 
techniques depending on the radiation environment of the 
mission.  The MISSE-7 experiment provided an opportunity 
to test memory EDAC on the SpaceCube v1.0 system.  
Several SDRAM schemes were evaluated and eventually the 
(16,8) quasi-cyclic (QC) code described in [21] was chosen 
for the flight FPGA.  The (16,8) code corrects all double 
errors and can detect all triple-adjacent errors in the data.  
The EDAC technique was incorporated into a standard 
SDRAM memory controller IP core. The encoding and 
decoding logic was added to the combinatorial logic path of 
the data in the memory controller, so that it would not 
require additional clock cycles.  The additional logic delay 
is sufficiently small that it does not reduce the data rate of 
the SDRAM.  In the SpaceCube v1.0, there are two 16-bit 
wide, 256MB SDRAM modules attached to each Xilinx 
FPGA.  For the MISSE-7 experiment, the pair of modules 
was combined to form a single 32-bit wide interface and the 
(16,8) scheme was employed in each device.  This yields an 
effective data width of 16-bits with the remaining bits 
devoted to the parity bits.  One limitation of the memory 
controller is that it only detects and corrects errors at a 
memory address when it is accessed.   

It corrects the data before it is presented to the PLB, but 
does not automatically write the corrected value back to 
memory.  This means that over a long duration, multiple 
upsets could accumulate.  However, when an error is 
detected in the data, an interrupt is sent to the PowerPC and 
the memory controller fills a FIFO with the memory address 
where the corrupted data is.  This allows the processor to 
scrub the memory during idle periods by performing a read 
operation at the addresses buffered in the FIFO and then 
writing the data back.     

FPGA and Software On-Orbit Reprogamability—Another 
driving requirement was to support the ability of ground 
operators to upload new FPGA configuration files, 
PowerPC software and SpaceRISC software files, then 
execute a command sequence to reprogram the system.  Due 
to the extremely low communication bandwidth capability 
to MISSE-7 and the polling schedule of the CIB, this is an 
extremely tedious and time-intensive process.  All files are 
first compressed on the ground using the GZIP utility. 

New software and FPGA configuration files are uplinked to 
the SpaceCube using ground commands that write the new 
files to the SpaceCube’s onboard Flash memory in 512 byte 
chunks.  A flash write of 512 bytes is comprised of a series 
of six ground commands.  The SpaceCube C&DH app strips 
out and buffers the data in each of the six commands in 
SDRAM, using a CRC in the sixth command of the series to 
validate the 512 byte chunk of data.  Once the CRC is 
validated, it sends a Flash write command to the SpaceRISC 
containing the chuck of data.  It then performs an automatic 
Flash read command and sends the data to ground in the 
next telemetry packet so that it can be verified that the flash 
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write executed properly.  If one of the six commands is 
received out of order, the C&DH resets its buffer, reports 
the error in telemetry and waits for a new series of packets 
to arrive. 

Due to the hundreds to thousands of commands needed to 
uplink new configuration files, an automatic command 
generation feature was built into the MISSE-7 ground 
software application.  The ISS Experiment Control Center 
(IECC) was developed in house at GSFC and is based on 
the GSFC Instrument remote control framework [8].  To 
uplink a file to the SpaceCube the IECC user provides a file 
name, a SpaceCube flash address, and a file offset if the user 
is in the middle of a file uplink.    

The IECC parses the file, calculating the size of the file and 
the number of packets needed to transfer the file.  It then 
generates a flash block erase command to clear the flash 
location that will be written to.  The IECC then starts 
generating the six command series needed to uplink one 512 
chunk at a time.  The IECC only transmits the next 
command in the series once it receives telemetry that the 
last was received and validated by the C&DH app.  It will 
automatically retransmit packets to account for dropped 
packets and Loss of Signal to ISS.  When the series of six 
packets completes, it waits for, then validates against the 
readback telemetry of the 512 chunk. If the readback is 
invalid it will log the issue and pause the process for 
debugging by the user.  If the readback is valid it generates 
the next series of six commands.  It continuous this process 
until the whole file is uplinked. 

Once the support files and new compressed configuration 
and/or software files are uplinked, the user executes a series 
of commands to reprogram the FPGA and embedded 
processors. 

The support files are encoded with the physical flash 
address location of the new FPGA and embedded processor 
configuration files along with other parameters needed to 
perform a reconfiguration.  

- RT_Config: contains addresses for new Flash 
Image Table, new top and bottom FPGA files 

- Flash_Image_Table: points to new boot scripts 
and new PowerPC SW 

- PPC_SW_Boot_Script: points to a slot in the new 
flash image table which points to the new PPC SW  

- Compressed Primary PPC SW: contains updated 
main app including the new C&DH. Its 
uncompressed automatically during bootup 

- Compressed experiment PPC SW: contains new 
experiment source code that operates on the second 
embedded PPC which is designated for 
experiments. (This code is stored in flash but 
loaded into BRAM by the main PPC app) 

- Compressed FPGA configuration: a file 
containing a FPGA bitsream that works on both the 
bottom and top FPGA.  

To decompress the new compressed FPGA configuration 
file or other compressed support file, a special ground 
command is used.  The user populates the flash decompress 
command with a source and destination flash address.  
When the C&DH app receives the command from the 
ground it calculates the file size, and verifies that the 
compress file is not corrupt, then writes the uncompress data 
to the new flash location.   Last, it reports the outcome of 
the decompression in its telemetry.  

Below is the series of ground commands that are executed 
to initiate a SpaceCube reconfiguration. 

1. Decompress compressed FPGA configuration file and 
save in a new flash memory location. 

2. Read back first and last 512 bytes for crude verification 
of successful decompression and flash write. 

3. Command SpaceRISC application to utilize new RT 
Config file located at a given flash address. 

4. Command SpaceRISC to Reload RT Config file 

5. Command SpaceRISC application to reconfigure FPGAs 

The SpaceRISC app will use the new FPGA files that are 
pointed to by the new RT_Config file.  Once the FPGA is 
configured, the embedded processor boot loader will ask the 
SpaceRISC for the flash location for its software.  The 
SpaceRISC will provide the new flash addresses provided 
by new Flash image table.  This will result in the new 
PowerPC software files to be loaded.  

To accommodate and mitigate anomalies in the 
reconfiguration process, only one FPGA per SpaceCube 
system is reprogrammed at a time.  If an anomaly occurs 
preventing one FPGA from being reconfigured, the C&DH 
app will continue to operate nominally on the other FPGA 
allowing for the reconfiguration to be reverted to the ‘Gold’ 
configuration.  A power cycle of the SpaceCube also results 
in a reversion back to all ‘Gold’ configurations. 

Operations—Primary MISSE-7 SpaceCube payload 
operations are performed at GSFC.  Operations are 
conducted through MSFC’s Huntsville Operations Support 
Center (HOSC), which manages the telemetry and 
command links to ISS attached payloads. 

Operations are conducted using two main application suites: 
the HOSC’s Telescience Resource Kit (TREK) and GSFC’s 
IECC.  TReK serves as gateway to ISS’s payload data 
stream and provides telemetry and command streams from 
GSFC to the HOSC.  The IECC sits on tops of TReK as an 
advanced secondary payload telemetry and command 
processor. The IECC is built on GSFC’s Instrument Remote 
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Control (IRC) framework. The IECC has the following 
features:  

- User generated custom displays via XML 

- Client/Server capabilities supports end users 

- Interactive and automated commanding 

- Real-time event detection and geolocation 

- Interactive event mapping and IRC plug-in 

- scripting for real-time complex telemetry 
processing 

The IECC displays real-time Health and status telemetry, 
plotting critical temperatures.  It has a feature that monitors 
SEU telemetry which autonomously time stamps and 
geotags the SEU events. 

The SpaceCube on the MISSE-7 payload is shown in Figure 
18. 

 
Figure 18 - SpaceCube/MISSE-7 Installation on ISS 

Results—The MISSE-7 SpaceCube payload has been 
continuously operating for four years at the time of this 
paper’s submission.   

We have had only one anomaly on 12/9/12 at 4:59pm EST 
that required power cycling the payload.  In this instance, 
one of the two SpaceCube experiments appeared to have 
stopped sending data and was not recoverable through reset 
and reconfigure commands.  Nominal operations were 
resumed after the power cycle.  There is not enough data to 
determine if the CIB was involved or if it was solely a 
SpaceCube problem.  No further issues have been observed. 

We have not experienced a processor reset as a result of a 
watchdog timeout.  Our data shows that the PowerPC 

processors have been up and running for more than 
99.999% of the time.  Further data analysis is needed to 
confirm 100%. 

The overall average SEU rate that we have collected on the 
four FPGAs is 0.09 SEU/Day/FPGA.  A 10-month sample 
of where SEUs have occurred are geotagged and depicted in 
Figure 19. Each color represents one of the four FPGAs. 

 
Figure 19 - MISSE-7 SpaceCube SEU Map 

We have noticed a few scrubber runaway occurrences.  The 
SEU count for a single FPGA starts incrementing at a fast 
rate.  It will last for a period of hours to days.  We have not 
noticed any adverse effects to the underlying applications 
running.   

Updated SEE results will be presented at the conference. 

The MISSE7 SpaceCube was an essential part to making 
MISSE7 a success.  The SpaceCube was considered the 
most reliable experiment and thus was utilized as an 
indicator to the health of the misse7 payload.  During 
integration testing the SpaceCube also uncovered an 
anomaly with the CIB that helped characterize operational 
performance. 

The MISSE7 SpaceCube system continues to be a 
successful and valuable payload because it is a prime 
showcase of the reliability, flexibility and high-performance 
of SpaceCube technology.  The SpaceCube team was 
involved in the full life cycle of this payload, from 
requirement writing, to hardware design, hardware 
assembly, software development, environmental testing, 
integration, and post launch operations.  This payload has 
provided significant lessons learned that have laid a strong 
foundation for all work that followed it. 

Development Effort—The development cycle for the 
MISSE-7 box was drastically less than that of the RNS box.  
This is mainly due to minimal NRE required to build the 
hardware.  The only new piece of hardware was the 
communication and power adapter slice.  This phase of the 
development took 9 months and required the equivalent of 
approximately 3.5 people/year, or 3 man-years.  The 
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application development phase took 1 year and required the 
equivalent of approximately 5 people/year, or 5 man-years.  
After payload delivery (2/2009), one FPGA and three 
software updates were made to fix issues that were found 
during payload testing and to add enhanced features.  This 
system was on a very short delivery schedule in order to 
meet payload integration milestones.  Being that SpaceCube 
is reconfigurable, it allowed us to meet the delivery deadline 
by delivering the system with all essential functions, but to 
continue development for later upgrades. 

C. DPP/Argon 

The Satellite Servicing Capabilities Office (SSCO) at GSFC 
began efforts in 2009 to improve the agency’s capability to 
robotically service satellites in space.  Two simultaneous 
flight projects were spawned from this effort (1) Robotic 
Refueling Mission (RRM) and (2) Dextre Pointing Package 
(DPP).  RRM was launched to ISS in 2011 and has been 
completely successful in demonstrating the capability to 
tele-operate tools in space to do robotic servicing tasks such 
as gas fitting removal, refueling, screw removal, and 
thermal blanket manipulation [20].  DPP was a more 
advanced follow-on mission to RRM that would 
demonstrate passive and active relative navigation sensing 
by autonomously controlling the ISS Dextre robot to point 
to and track vehicles within proximity [17].  Due to budget 
constraints, the SSCO had to downgrade DPP to a AR&D 
ground demonstration called Argon. Argon integrates 
essential AR&D components and unique algorithms into a 
system that autonomously images, visually captures and 
tracks dynamic and static target [19]. 

The Argon system show in Figure 21 consists of two RNS 
cameras, a star tracker, a Visual Navigation System (VNS), 
an Inertial Measurement Unit (IMU), an Infrared camera, a 
wireless Ethernet module, Power Control Unit (PCU), a 
suite of situational awareness cameras, and the SpaceCube 
as the payload avionics and onboard processor.  1553, 
Ethernet, and wireless 802.11 Ethernet are the main 
communication channels.  The main objectives were to 
demonstrate a robotic AR&D system that couples the 
functionality of a collection of cameras, sensors, computers, 
algorithms, and avionics to independently track an 
uncontrolled target at different ranges.  Once the AR&D 
system has locked onto the target, Argon will safely guide 
the robot through precise rendezvous and docking 
maneuvers [19]. 

SpaceCube Hardware Changes—A few modifications were 
necessary to support the increased requirements of the 
Argon system.  A new Video Compression Module (VCM) 
slice for the SpaceCube was built to handle the new 
interface requirements of the situational awareness cameras 
(NTSC).  The VCM is Xilinx-based, which was a huge 
upgrade in reconfigurability and functional potential 
compared to the Actel-based VIM slice on RNS.  New DCC 
boards were made to fix timing parameters within the 
Ethernet circuit to guarantee functionality with ELC.  
Finally, both processor card front-panel connector 

configurations were changed to increase the amount of I/O 
available.  This required new processor housings.   

 
Figure 20 - Argon Assembly, SpaceCube Lower Right 

FPGA Design and Application Description—The 
SpaceCube applications heavily leveraged the RNS work as 
a starting point.  The FPGA designs were adapted to 
accommodate the added Argon requirements. The AGC and 
GNFIR algorithms were improved from RNS.  Two 
additional AR&D algorithms with supporting FPGA 
hardware accelerator cores were added, Goddard FlashPose 
and JSC Cooperative 3D Pose.  The SpaceCube 1553 and 
Ethernet interfaces also required development and test to 
obtain reliable operation. 

 
Figure 21 - Argon SpaceCube Diagram 

Argon required a significant amount more processing power 
than on RNS.  As a result, all 8 PowerPCs were utilized 
running the SpaceCube Linux OS.  A custom software bus 
was implemented that utilized the LVDM transceivers to 
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communicate between cards via the internal stacking 
connector.  During application development, Ethernet was 
used for quickly loading new FPGA configuration and 
software files to flash storage via the internal PowerPC bus 
architecture.  For the four FPGAs, slice utilization ranged 
from 80-95% and BRAM utilization ranged from 60-90%.  
This configuration of the SpaceCube requires 43W of 
power. 

Testing—Static and dynamic system testing with Argon 
occurred at GSFC’s Satellite Servicing Center, the Naval 

Research Laboratory (NRL), and at Lockheed’s Space 
Systems facility in Denver.  Argon was successful in 
demonstrating its stated objectives with a flight-ready 
system.  Figure 22 shows a picture of open- and closed-loop 
system testing of Argon.  The Argon package is attached to 
the blue Fanuc robot arm on the far left.  Argon tracks the 
motion of a non-cooperative, tumbling satellite, which is the 
gold mockup mounted on a motion-based Rotopod platform 
on the far right [18-19]. 

 
Figure 22 - Argon Testing at the GSFC Robotic Satellite Servicing Center

Development Effort—The hardware required some NRE to 
build new DCCs, a new VCM card, and slightly modify the 
processor card connectors.  This phase of the development 
was programmatically slow, taking 18 months and required 
the equivalent of approximately 4 people/year, or 6 man-
years.  The application development phase was more 
involved to accommodate the additional interface 
requirements and demonstration objectives.  It took 2 years 
and required the equivalent of approximately 9 people/year, 
or 18 man-years.  The Argon system development was very 
dynamic as the internal architecture was in constant flux.  
The SpaceCube system was heavily leveraged for its ability 
to adapt to the changing requirements by reconfiguration of 
the FPGAs and software. 

D. SpaceCube CIB on STP-H4 

The DoD Space Test Program (STP), managed by the Air 
Force, was responsible for the payload processing of 

MISSE-7.  They were impressed by the reliability and 
capability of the MISSE-7 SpaceCube during system 
integration testing and by its on-orbit performance.  STP 
requested that Goddard deliver a SpaceCube v1.0 system to 
replace the legacy CIB system from MISSE-7 for a new ISS 
payload called STP Houston-4, or STP-H4.  The SpaceCube 
CIB (SC_CIB) gives the STP-H4 payload the ability to offer 
experiments higher bandwidth data connections since 
SpaceCube supports an Ethernet interface compatible with 
the ISS High Rate Data Link (HRDL) via ELC avionics.  
STP-H4 is installed on ELC-1.  The STP-H4 payload pallet 
is shown in Figure 23.  The SpaceCube CIB is seen on the 
bottom right. 

For STP-H4, SpaceCube CIB supports six experiments via 
RS422 interfaces.  One of the experiments is called ISS 
SpaceCube Experiment 2.0 (ISE 2.0), which is a GSFC 
experimental payload based on an Engineering Model of the 
SpaceCube v2.0 processing system [23]. 
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Figure 23 - STP-H4 System Integration 

SpaceCube Hardware Description—The SpaceCube CIB is 
a base system, which as described in section 3 is one 
processor slice and one power slice [8].  The hardware used 
for the SC_CIB is a true reflight of one of the processor and 
LVPC cards from the RNS SpaceCube flight box that flew 
on Shuttle Atlantis.  The DCC board was taken from the 
flight box developed for the DPP/Argon campaign.  A new 
DCC board was needed to support the Ethernet interface 
required on STP-H4. The SpaceCube CIB draws 15W of 
power. 

FPGA/Software Application Description—The main 
objective of the SC_CIB application is to provide a C&DH 
application between ELC and the payload experiments.  A 
custom C&DH application for the PowerPC was developed 
for STP-H4.  This application validates and forwards 
commands to the appropriate payload.  The C&DH 
application schedules high rate telemetry (HRT) and low 
rate telemetry (LRT) requests from all payloads in addition 
to the CIB itself.  The main interface is 1553, which is used 
for commanding, LRT, and health and status data.  The 
SC_CIB collects health and safety data every second from 
all attached payloads and its own internal registers such as 
temperatures, voltages, command and telemetry packet 
counter, etc., to aid in the operations of the payload.  The 
HRT is sent to the Ethernet interface which operates at a 
maximum theoretical bandwidth of 10Mbps.  The high level 
interfaces of the SpaceCube CIB are depicted in Figure 24. 

The SC_CIB FPGA design leveraged heritage cores and 
overall embedded architecture from prior missions, which 
was crucial in allowing for a fast application development 
cycle required to meeting the ambitious delivery schedule.  
The interrupt controller, USART, and scrubber cores are 
from RNS.  The SDRAM DECTED EDAC core is from 
MISSE-7.  The 1553, Ethernet MAC, and Ethernet PHY 
cores are from Argon.  Likewise for software, design 
heritage was a key component in signing up for the fast 

delivery schedule.  The Linux OS framework from RNS 
was used with all supporting FPGA core drivers.  The 
SpaceRISC updates from MISSE-7 were incorporated to 
enable on-orbit reconfiguration of the FPGA.  The C&DH 
application incorporates the flash file support and 
compression/decompression software from MISSE-7 that is 
also required to support on-orbit FPGA reconfiguration and 
software updates.  The 1553 and Ethernet drivers were used 
from Argon. 

Two new FPGA cores with supporting software drivers 
were developed to meet the CIB requirements.  The 
TimeCore keeps an internal system time that is 
synchronized with the ISS broadcast time at a rate of 1Hz.  
This timestamp is included in all data packets sent to the 
attached payloads. The Time core is accurate to 1 byte of 
fine time, which is approximately 4ms. 

The second core that was developed for CIB is the Payload 
Interface Core that is used to communicate with each 
attached payload via RS422.  It validates incoming packets, 
searches for the sync header, validates header fields, and 
checks for a valid CRC. It strips out payload data and 
presents packet statistics to the C&DH software via a series 
of flags.  It also generates all packets transmitted to the 
payloads.  The software writes the desired packet type to a 
register and if it’s a command it puts the command payload 
into a FIFO.  The core then generates the packet header, fills 
in the payload data from the FIFO, and appends the 
calculated CRC.  The core also manages payload response 
timeouts, by setting timers after packet transmissions and 
notifies software if the timer expired before a valid response 
was received.  This core utilizes the TimeCore to timestamp 
all the packets sent to the payloads. It latches the time as it 
creates the packet to reducing latency to only the packet 
transmit time. At a high level it abstracts the payload 
interface to the software as a series of flags and payload data 
in FIFOs. This reduces the load on the software, allowing 
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the system to quickly collect and transmit the data to the 
ISS. 

Only one FPGA and one PowerPC were used to implement 
the CIB requirements.  The FPGA design utilized 
approximately 40% logic and 30% BRAM resources.  To 
avoid the accumulation of SEUs that could cause potential 
issues, a design that only contains the configuration 
scrubber is implemented on the second FPGA. 

CIB Testing and Integration—The SpaceCube CIB went 
through environmental testing at GSFC prior to delivery to 
STP-H4 in Houston, TX.  GSFC continued to support the 
system level tests and integration.  A 1553 Remote Terminal 
address bug was uncovered during 1553 validation testing.  
The software patch to fix the bug was tested at GSFC and 
the SpaceCube CIB in Houston reprogrammed within 48 
hours of discovering the issue.  A second software patch 
was later performed to improve overall functionality as a 
result of ongoing testing at GSFC. 

Following flawless system integration in Houston, the 
payload was sent to KSC.  A risk reduction payload test was 
performed that included validating communication with the 
ELC Ethernet interface.  After correcting a minor issue in 
the harness, the SpaceCube CIB successfully streamed 1.2 
GB of data at an effective rate of 1.5Mbps.  Environmental 
testing on the system and final end-to-end tests occurred 
prior to shipment to Japan for launch vehicle integration. 

The FPGA design was locked after environmental testing at 
GSFC and never required an update post-delivery.  The 
option to reconfigure the FPGA on-orbit exists if necessary. 

Operations—The STP-H4 payload was launched to ISS on 
the JAXA HTV-4 vehicle in August 2013.  The payload was 
activated shortly after arrival.  The SpaceCube CIB’s 
telemetry is being monitored with the IECC and it has been 
operating nominally.  All temperatures, voltages, and 
statuses are as expected.  All attached payload’s telemetry 
and commands are being transmitted without error. 

The GSFC IECC has the capability to command and 
monitor the STP-H4 payload.  The SC_CIB has successfully 
been sent commands to reset status and its internal counters. 

SEE results will be compared to those of the MISSE-7 
SpaceCube, and presented at the conference. 

Development Effort—The agreement with STP-H4 put the 
SpaceCube CIB on a strict 12 month delivery schedule.  The 
hardware did not require any NRE.  Thus, the hardware 
build phase of the development was fast.  It only took 11 
months to build, test, and deliver the hardware.  This phase 
required the equivalent of approximately 3 people/year, 
which is roughly 3 man-years.  The application development 
phase required more people to implement the CIB-specific 
FPGA and software requirements.  It took 12 months and 
required the equivalent of approximately 5 people/year, or 5 
man-years.  After delivery, the STP-H4 system integration 
required 2 people for 6 months, which increases the total 
application effort to 6 man-years.  The hardware reuse, 
FPGA/software design heritage, and reconfigurable options 
of the SpaceCube allowed us to confidently deliver a 
product within the aggressive schedule requirement.  The 
reconfigurability of the system was utilized after delivery to 
fix issues found during payload integration. 

 
Figure 24 - SpaceCube CIB System Diagram
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5. CONCLUSIONS 
SpaceCube fits the need for a hybrid computing architecture 
for space.  We have demonstrated reliable use in three 
separate missions including over four years of operation on 
the MISSE-7 payload.  The computing power of the 
SpaceCube system provides at least a 10x performance 
increase over traditional space processors.  We have shown 
how we have solved extreme data-intensive and 
computation-intensive applications within RNS and Argon 
by leveraging a multi-processing platform coupled with 
reconfigurable FPGAs.  Traditional space processing 
systems cannot handle these advanced applications.  The 
SpaceCube hybrid processing system enables break-through 
mission objectives such as AR&D and robotic servicing. 

In addition, the SpaceCube is both reconfigurable and 
modular.  We have shown how we have used these traits to 
quickly adapt to new missions and changing requirements.  
Each mission, aside from the SC_CIB, required a mission 
unique I/O card to meet requirements.  

On the MISSE-7 SpaceCube, we have proven the ability to 
reconfigure the system in space flight with new FPGA and 
software design files sent from ground.  The flexibility of 
SpaceCube allowed for an ad-hoc collaborative effort to be 
utilized in developing the new versions of software and 
FPGA designs that were used to reprogram it in space. 

Within this paper we have also highlighted the development 
effort to build each of the systems in Section 4.  This data is 
summarized in Figure 25 and Figure 26.  The hardware 
NRE, FPGA NRE, and software NRE are significantly 
reduced after the RNS mission.  Each of the follow-on 
missions only required engineering to build and test copies 
of the hardware, develop mission unique I/O cards, and 
integrate the new application requirements in FPGA and 
software.  This reduction in NRE has a great benefit to 
program cost and schedule.  The reuse and application of 
SpaceCube to different mission profiles is only possible due 
to its reconfigurability and modularity.  As shown for the 
SC_CIB mission, schedule risk was reduced due to heritage 
design, hardware reuse, and the reconfigurable FPGAs and 
software features of the SpaceCube.  These combined 
features are what enabled our confidence in delivering a 
working system within 12 months. 

 
Figure 25 - Development Duration per Mission 

 
Figure 26 - Total Development Effort per Mission 

The reduction of initial design NRE cost, the flexibility of 
the hybrid architecture, and the inherent low power and 
weight of the SpaceCube system is what makes the 
SpaceCube attractive to missions requiring an advanced 
avionics package. 

6. FUTURE WORK 
GSFC is currently supporting two new programs that will 
use a SpaceCube v1.0 system for on-board payload 
processing.  GSFC is delivering another SpaceCube CIB for 
STP-H5, which is a follow-on project to STP-H4.  The 
hardware will be identical to STP-H4, but will require some 
software modifications to support new experiments, 
including file transfer.  Also, SSCO will use a SpaceCube 
v1.0 system to control the third phase of RRM.  The RRM-3 
SpaceCube will require an I/O card to handle analog 
monitoring and control of the payload systems, and will also 
require an added Ethernet interface to communicate with the 
ISS wireless 802.11 network. 
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